Mechanically, the Shoot Apical Meristem of Arabidopsis Behaves like a Shell Inflated by a Pressure of About 1 MPa
نویسندگان
چکیده
In plants, the shoot apical meristem contains the stem cells and is responsible for the generation of all aerial organs. Mechanistically, organogenesis is associated with an auxin-dependent local softening of the epidermis. This has been proposed to be sufficient to trigger outgrowth, because the epidermis is thought to be under tension and stiffer than internal tissues in all the aerial part of the plant. However, this has not been directly demonstrated in the shoot apical meristem. Here we tested this hypothesis in Arabidopsis using indentation methods and modeling. We considered two possible scenarios: either the epidermis does not have unique properties and the meristem behaves as a homogeneous linearly-elastic tissue, or the epidermis is under tension and the meristem exhibits the response of a shell under pressure. Large indentation depths measurements with a large tip (~size of the meristem) were consistent with a shell-like behavior. This also allowed us to deduce a value of turgor pressure, estimated at 0.82±0.16 MPa. Indentation with atomic force microscopy provided local measurements of pressure in the epidermis, further confirming the range of values obtained from large deformations. Altogether, our data demonstrate that the Arabidopsis shoot apical meristem behaves like a shell under a MPa range pressure and support a key role for the epidermis in shaping the shoot apex.
منابع مشابه
THE EFFECTS OF SALT STRESS ON THE SHOOT APICAL MERISTEM AND LEAF GENIERATION IN SUNFLOWER (HELIANTNUS ANNUUS L.)
Sunflower (Helictnthur annuus L. cvs Mehr Shafagh) seedlings were grown in nutrient solutions containing 20.5 to 70.4 mM NaCl and 0 as the control. The effects of salinity on developmental changes occurring in the shoot apices of plants were studied. At 20.5 mM NaCI concentration, the leaf emergence rate and plastochron index of Shafagh increased significantly, but this phenomenon was not o...
متن کاملQUANTITATIVE AND QUALITATIVE CHANGES IN SHOOT APICAL MERISTEM OF SAFFRON CROCUS DURING THE PERIOD OF GROWTH AND DEVELOPMENT
متن کامل
Pattern formation during de novo assembly of the Arabidopsis shoot meristem.
Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. ...
متن کاملNuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana
The gene SHOOT MERISTEMLESS (STM) is required for the initiation and the maintenance of the shoot apical meristem (SAM) in Arabidopsis and encodes a MEINOX/three amino acid loop extension (TALE)-HD-type transcription factor. Translational fusions with the green fluorescent protein showed that STM is not nuclear by default. In a yeast two-hybrid screen performed with a meristem-enriched cDNA lib...
متن کاملULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by...
متن کامل